Introduction¶
-
Basic concepts of supervised learning
- Sample, example, pattern
- Features, predictors, independent variables
- State of the nature, labels, pattern class, class, responses, dependent variables
- \(\omega_1,\omega_2,\dots,\omega_c\) or \(y_1,y_2,\dots,y_c\) or \(z_1,z_2,\dots,z_c\)
-
Training data
- \((x_1,\omega_1),(x_2,\omega_2),\dots,(x_n,\omega_n)\)
-
Model, statistical model, pattern class model, classifier
- Test data
- Training error & test error
-
classification(categorization, decision, making...): \(y\) is a categorical variable
- regression: \(y\) is real-valued
- Good representation: low intra-class variability and low inter-class similarity
- cumulative distribution function(CDF): 累计分布函数
- probability density function(PID): 概率密度函数