跳转至

Introduction

  1. Basic concepts of supervised learning

    • Sample, example, pattern
    • Features, predictors, independent variables
    • State of the nature, labels, pattern class, class, responses, dependent variables
      • \(\omega_1,\omega_2,\dots,\omega_c\) or \(y_1,y_2,\dots,y_c\) or \(z_1,z_2,\dots,z_c\)
    • Training data

      • \((x_1,\omega_1),(x_2,\omega_2),\dots,(x_n,\omega_n)\)
    • Model, statistical model, pattern class model, classifier

    • Test data
    • Training error & test error
  2. classification(categorization, decision, making...): \(y\) is a categorical variable

  3. regression: \(y\) is real-valued
  4. Good representation: low intra-class variability and low inter-class similarity
  5. cumulative distribution function(CDF): 累计分布函数
  6. probability density function(PID): 概率密度函数

评论