跳转至

Rendering

Monte Carlo Integration

Rendering = Infinite-dimensional Integrals

  • 5D Integral: Real Camera Pixel Exposure

  • estimate the volume of a d-dimensional sphere

对高维度情况效率会不断下降到0

  • Quadrature-based Integration Error $$ Error \sim \frac{1}{n}=\frac{1}{N^{1/d}} $$

  • Random Sampling Error 随机采样误差与维度无关 $$ Error=Variance^{½}\sim\frac{1}{\sqrt{N}} $$

  • 直至现在为止,蒙特卡洛采样仍然是处理高维导数的唯一办法

  1. Overview

    • Idea: estimate integral based on random sampling of a function
    • Strength
      • General and relatively simple
      • Requires only function evaluation at any point
      • Works for very general functions, including discontinuities
      • Efficient for high-dimensional integrals
    • Weakness
      • noisy: 只是平均意义上正确
      • 收敛速度可能很慢,需要大量采样
  2. Monte Carlo estimator

    • Define integral \(\int_a^bf(x)dx\)
    • Random variable \(X_i\sim p(x)\)
    • estimator: \(F_N=\dfrac{1}{N}\sum_{i=1}^N\dfrac{f(X_i)}{p(X_i)}\)
  3. basic Monte Carlo estimator

    • \(X_i\sim p(x)=\dfrac{1}{b-a}\)
    • so \(F_N=\dfrac{1}{N}\sum_{i=1}^Nf(X_i)\)
  4. 蒙特卡洛是unbiased的

image-20241211083910233
  1. Direct Lighting Estimate

    • idea: sample directions over hemisphere uniformly in solid angle

      image-20241211190251824

  2. Importance Sampling 更加高效

    • \(p(x)\)更加接近\(f(x)\)的分布,函数值越大采样概率越高
  3. 如果\(p(x)\)精确知道\(f(x)\),我们只需要一个样本点就够了

Global Illumination

  1. deal with infinite dimension: probabilistic termination

    • can design this to be unbiased - this is called Russian Roulette
  2. reweight

\[ \left.\left.\left.\mathrm{Let~}X_{\mathrm{rr}}=\left\{\begin{array}{l}\frac{X}{p_{\mathrm{rr}}},\text{ with probability }p_{\mathrm{rr}}\\0,\mathrm{~otherwise}\end{array}\right.\right.\right.\right. \]

unbiased

\[ E[X_{\mathrm{rr}}]=p_{\mathrm{rr}}E\left[\frac{X}{p_{\mathrm{rr}}}\right]+\left(1-p_{\mathrm{rr}}\right)E[0]=E[X] \]

但是会扩大variance

评论